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Abstract

The present paper describes a new family of time stepping methods to integrate dynamic equations of motion. The sca-
lar wave equation is considered here; however, the method can be applied to time-domain analyses of other hyperbolic
(e.g., elastodynamics) or parabolic (e.g., transient diffusion) problems. The algorithms presented require the knowledge
of the Green’s function of mechanical systems in nodal coordinates. The finite difference method is used here to compute
numerically the problem Green’s function; however, any other numerical method can be employed, e.g., finite elements,
finite volumes, etc. The Green’s matrix and its time derivative are computed explicitly through the range [0,Dt] with either
the fourth-order Runge–Kutta algorithm or the central difference scheme. In order to improve the stability of the algo-
rithm based on central differences, an additional matrix called step response is also calculated. The new methods become
more stable and accurate when a sub-stepping procedure is adopted to obtain the Green’s and step response matrices and
their time derivatives at the end of the time step. Three numerical examples are presented to illustrate the high precision of
the present approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Time dependent partial differential equations have numerous applications in various branches of science
and in practical engineering design. Since it is usually very difficult to obtain transient responses analytically
for these equations, numerical techniques must be used to find approximate solutions.

Step-by-step time integration algorithms are routinely used when hyperbolic differential equations, such as
the wave equation considered here, need to be solved, because of their various inherent advantages to solve a
great deal of initial value problems.
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The literature reports many classical explicit [1–6] and implicit [7–11] algorithms for time marching; for a
comprehensive review see [12]. Explicit procedures are preferable because they are cheaper and faster, restric-
tions due to stability conditions being their main weakness. Many procedures can be employed to improve
stability and accuracy of time-integration algorithms, e.g., subcycling techniques [13–15], high-order accurate
schemes [16–21] and automatic time step control [22].

The family of algorithms presented here deals with time integration of the equations of motion by the asso-
ciation of standard explicit schemes with the corresponding time-domain boundary integral equation [23]
through the solution based on explicit determination of numerical Green’s functions (ExGA family). It is worth
mentioning that the term ‘‘explicit’’ is employed in the sense that the Green’s functions are explicitly computed.

Wrobel [24] developed a time-stepping algorithm based on analytical expressions of Green’s functions of
homogeneous infinite media and Soares and Mansur [25] developed a formulation that uses Green’s functions
implicitly within standard time-marching schemes. Tamma et al. [26] and Zhou and Tamma [27] derived a new
family of unconditionally explicit or implicit algorithms based on analytical solution of first-order ordinary
differential equations in which the concept of Green’s functions is also implicitly present.

The time-domain boundary integral equation presented by Mansur [23] can be used as a starting point for
the developments presented here. In the procedure discussed in the present paper the major limitation of BEM
approaches is removed, i.e., it is not necessary to have an analytical expression for the Green’s function of the
problem, rather, it is computed numerically. Any standard numerical method can be employed to compute the
problem Green’s function, thus, there is no limitation at all, i.e., the medium can be non-homogeneous, aniso-
tropic, viscoelastic, poroelastic, etc. The price to pay for the aforementioned generality is the discretization of
the domain; however, substantial accuracy and stability improvements are achieved. In fact if sub-steps are
employed, it is possible to choose the maximum time step for which explicit Green’s function based algorithms
are stable and accurate. One can easily employ time steps thousands times larger than those permitted by the
central difference or Runge–Kutta methods; the only restriction on the time-step ‘‘length’’ being now con-
cerned with having a good picture of the time response history.

Two Green’s function explicit approaches, applied to the scalar wave equation, are considered in the pres-
ent paper:

(i) ExGA – In this approach the Green’s function (G matrix) and its time derivative ( _G matrix) transfer,
respectively, initial velocity and initial displacement, both weighted by mass, from 0 to Dt. If viscous
damping is considered, an additional effect proportional to the product of the initial displacement vector
times the viscous matrix is transferred from 0 to Dt by the problem Green’s function.

(ii) ExGAH – In this approach, initial velocity effects are transferred from 0 to Dt as in the previously
described one. The effects of initial displacements are transferred from 0 to D t by the so called step
response matrix (H), which stores responses at Dt, due to individual spatial distribution of initial displace-
ments represented by nodal interpolation functions (if the FEM is employed, or equivalent approaches
for other methods) and computes the response at Dt by superposition, as given by the product HU(0).

The two approaches are equivalent, their difference being the matrices employed to compute initial dis-
placements effects. The ExGA approach is entirely new; a preliminary version can be found in [28,29]. The
basic concepts leading to it can be found in [23,25], the former presents the version on integral representations
and the latter presents the implicit version.

Approaches similar to the ExGAH have been the subject of some papers discussion, and are usually
referred to as ‘‘precise time-step integration methods’’, as can be seen in [30,31,13]. The interpretation of
the step response matrix as a matrix that transfers the contributions of U(0) to U(Dt) via superposition in
space of contributions of individual nodes can be easily inferred from Eq. (9) of the present paper.

It is shown here that one can compute G, H and _G matrices employing any numerical approach to discretize
in time and space. The discussion presented here shows that arbitrary time-steps subdivisions can be employed
to compute G, _G and H matrices, and introduces a general scheme to compute convolution integrals which
account for nodal loads contributions even when sub-steps are employed.

The Green’s function G, the step response function H, and their time derivatives are computed using finite
differences discretization in space and either central differences or fourth-order Runge–Kutta for time
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integration. The following notation distinguishes the combinations employed: ExGA(H) – ba, where the
Green’s function matrix G and its time derivate _G (or matrices G and H) are computed employing a second
(a = 2) or fourth (a = 4) order finite difference operator in space and central differences (b = CD) or fourth-
order Runge–Kutta (b = RK) to march on time. Absence of superscripts means no spatial discretization, i.e.,
in the present paper it indicates a SDOF spring–mass–dashpot system.
2. Equations of motion

The dynamic equilibrium equation for scalar wave propagation problems reads
rðKruðx; tÞÞ � c _uðx; tÞ � q€uðx; tÞ ¼ f ðx; tÞ ð1Þ

where K, c and q are the problem physical parameters, which in the present analysis are considered to be time
independent. Eq. (1) can represent many different physical problems, e.g., acoustic wave propagation, SH
wave propagation in elastic media, transverse motion of taught strings and membranes, etc.

When the finite element method (FEM) or the finite difference method (FDM) is applied, Eq. (1) can be
written as [32–36]:
M €UðtÞ þ C _UðtÞ þ KUðtÞ ¼ FðtÞ ð2Þ

If a structural system is being considered, M, C and K denote mass, damping and stiffness matrices, respec-

tively, F(t) is the nodal equivalent load vector and €UðtÞ, _UðtÞ and U(t) are, respectively, unknown acceleration,
velocity and displacement vectors. The solution of Eq. (2) can be obtained by a numerical step-by-step pro-
cedure with initial conditions at time t = 0 given by U(0) and _Uð0Þ.

Modal decomposition can be invoked to compute the solution of Eq. (2). In this case, uncoupled equations,
as indicated below (one for each mode), have to be solved. Solution of Eq. (2) is then obtained by transforming
results back from modal to physical coordinates.
€uðtÞ þ 2nx _uðtÞ þ x2uðtÞ ¼ f ðtÞ ð3Þ

In Eq. (3), x is the eigenfrequency corresponding to a particular vibration mode and n and f(t) are, respec-

tively, the damping ratio and the modal excitation force.
The modal displacement u(t) in Eq. (2) can be calculated by the Duhamel integral [37–39], as
uðtÞ ¼ ð _gðtÞ þ 2nxgðtÞÞuð0Þ þ gðtÞ _uð0Þ þ
Z t

0

gðt � sÞf ðsÞds ð4Þ
where u(0) and _uð0Þ are initial conditions and g(t) and _gðtÞ are, respectively, the Green’s function correspond-
ing to Eq. (3) and its time derivative. The exact Green’s functions for the single-degree-of-freedom mechanical
system represented by Eq. (3) is given by [32–39]:
gðtÞ ¼ expð�xntÞ 1

xd

sinðxdtÞ
� �

_gðtÞ ¼ expð�xntÞ cosðxdtÞ � xn
xd

sinðxdtÞ
� � ð5Þ
where xd ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
and for t = 0, one has g(0) = 0 and _gð0Þ ¼ 1.

There are quite a few approaches in the literature with the exact amplification matrix in modal coordinates
and others with approximations in the physical time space (not modal space), for a more comprehensive
review, see [31,40–42].
3. The Explicit Green approach (ExGA)

The previous section showed the analytical solution of the second-order differential equation for a single-
degree-of-freedom system. In this paper, Eq. (2) is manipulated directly, so that Eq. (4) can be back trans-
formed to physical coordinates, giving (see [25,28,29,43]):
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UðtÞ ¼ ðGðtÞCþ _GðtÞMÞUð0Þ þGðtÞM _Uð0Þ þ
Z t

0

Gðt � sÞFðsÞds ð6Þ
The velocity, which is calculated by differentiating Eq. (6) with respect to time, is given by
_UðtÞ ¼ ð _GðtÞCþ €GðtÞMÞUð0Þ þ _GðtÞM _Uð0Þ þ
Z t

0

_Gðt � sÞFðsÞds ð7Þ
In many engineering problems, analytical expressions for the Green’s functions are not known, thus, the
Green’s matrix must be calculated numerically by a time integration method. Assuming that the time step
is Dt, Eqs. (6) and (7) can be used to recursively evaluate displacement and velocity vectors at any time t

as indicated below:
UtþDt ¼ ðGðDtÞCþ _GðDtÞMÞUt þGðDtÞM _Ut þ
Z tþDt

t
Gðt þ Dt � sÞFðsÞds

_UtþDt ¼ ð _GðDtÞCþ €GðDtÞMÞUt þ _GðDtÞM _Ut þ
Z tþDt

t

_Gðt þ Dt � sÞFðsÞds

ð8Þ
The following integral equation presented by Mansur [23], can be used to illustrate a classical procedure
based on Green’s function, which applies for undamped (c = 0) homogeneous media (time derivative of
Eq. (9), which gives the expression for _uðs; tÞ, can be found in [44]):
uðs; tÞ ¼ 1

4pk

Z tþ

0

Z
C

u�ðQ; t; s; sÞpðQ; sÞdCðQÞds�
Z tþ

0

Z
C

p�ðQ; t; s; sÞuðQ; sÞdCðQÞds

(

�q
Z

X
v�0ðq; t; sÞu0ðqÞdXðqÞ þ q

Z
X

u�0ðq; t; sÞv0ðqÞdXðqÞ
�
þ
Z t

0

Z
X

u�ðQ; t; s; sÞf ðsÞds ð9Þ
where X and C are, respectively, the domain and boundary of the problem. When the Green’s function is null
on Cu (where essential conditions are prescribed), which is the case of G indicated in Eq. (6), the first integral
on the r.h.s of Eq. (9) is restricted to Cp (where natural boundary conditions are prescribed, see [23]).

Note that BEM and ExGAH(or ExGA) compute initial conditions and boundary flux/load contributions
in quite a similar way; however, boundary pressure/displacement contributions are computed differently for
each method: in the ExGA pressure/displacement contribution is computed in a FEM way; the corresponding
boundary integral indicated in expression (9) is not present in expression (6).

It is important to observe that Eq. (6) is quite general, i.e., it can be applied to any kind of physical model,
e.g., anisotropic viscoelastic media, etc.; it is only necessary to establish a suitable methodology to compute the
Green’s function of the problem.

To calculate the numerical solution at t + Dt, as indicated by Eq. (8), the convolution integrals shown there
must be computed numerically. Three alternatives to compute these convolution integrals are indicated
below:
Z tþDt

t
Gðt þ Dt � sÞFðsÞds ¼

Z Dt

0

GðDt � sÞFðt þ sÞds �
Xk

j¼1

w1ðjÞ
( )

Ft þ
Xk

j¼1

w2ðjÞ
( )

FtþDt ð10Þ

Z Dt

0

GðDt � sÞFðt þ sÞds �
Xk

j¼1

1

2
w1ðjÞ þ

1

2
w1ðj� 1Þ

( )
Ft þ

Xk

j¼1

1

2
w2ðjÞ þ

1

2
w2ðj� 1Þ

( )
FtþDt ð11Þ

Z Dt

0

GðDt � sÞFðt þ sÞds �
Xk=2

j¼1

1

3
w1ð2jÞ þ 4

3
w1ð2j� 1Þ þ 1

3
w1ð2j� 2Þ

( )
Ft

þ
Xk=2

j¼1

1

3
w2ð2jÞ þ 4

3
w2ð2j� 1Þ þ 1

3
w2ð2j� 2Þ

( )
FtþDt ð12Þ
where w1ðjÞ ¼ 1� j
k

� �
Dt
k G Dt � jDt

k

� �
and w2ðjÞ ¼ j

k
Dt
k G Dt � jDt

k

� �
.
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Eq. (10) is very simple (Rectangle rule) and assumes that the integrand is constant for every sub-interval
inside the range [t, t + Dt]. Approximation (11) is given by the Newton–Cotes formula where an interpolation
polynomial of order 1 (Trapezoidal Rule) is generated for each equal sub-interval between [t, t + Dt]. Eq. (12)
indicates that the integrand is approximated by a polynomial of order 2 (Simpson’s 1/3 rule), thus the method
needs three points; consequently the integer number k must be multiple of two. The convolution integral con-
cerning the velocity vector is calculated by replacing the Green’s matrix by its time derivative in the above
equations.

The integer number k may be the sub-steps number n or a number less than n where values of G(t) are
known. For example, when n = 4, the integer k has the following possibilities k = 1,2,4; when n = 6, the inte-
ger k may be k = 1,2,3,6 and so on. However, the present method allows large Dt when sub-steps are
employed, in which case linear time interpolation for F(t), as considered in Eqs. (10)–(12), may not be accept-
able. In order to improve the linear approximation one may apply an h or p time refinement.

The Green’s matrices at time t = Dt must be calculated before using Eq. (8). Usually, texts of mathematic–
physics (see [23,45]) present analytical expressions for Green’s functions for homogeneous infinite domains;
in elastic, acoustic or other similar wave propagation problem, the Green’s function represents the response
at a field point x, at time t, due to an impulsive signal applied at a source point s, at time t = s. Here, Green’s
functions are obtained via numerical methods (FDM in present paper), thus they can refer to any physical
medium. Furthermore, the Green’s function can be made to obey the problem boundary conditions, or any
other that may be adequate; however, employing a numerical method to compute Green’s functions may be
too expensive. It is important to notice that this is not the case here as the complete Green’s function time
history is not required: only values of G(t) at t = Dt or at sub-steps are necessary, as a step-by-step time
marching scheme is employed to integrate the governing equations (see expression (8)). The physical relation
‘‘impulse equals momentum variation’’ permits computation of the problem Green’s function gj(xi, t), corre-
sponding to an impulsive source located at point j of the grid applied at time s = 0, by solving Eq. (13) (K
has been admitted homogenous), considering the following initial conditions: gj(xi, 0) = 0; _gjðxi; 0Þ ¼ dij=q
(see [25,28,29]):
Kr2gjðx; tÞ � c _gjðx; tÞ � q€gjðx; tÞ ¼ 0 ð13Þ
As mentioned before, Eq. (13) is spatially discretized by the FDM in the present work: a second or fourth-
order finite difference discrete operator was used as an approximation to the spatial derivatives indicated. The
final algebraic equations written in matrix form read
M €GðtÞ þ C _GðtÞ þ KGðtÞ ¼ 0

Gð0Þ ¼ 0

_Gð0Þ ¼M�1

ð14Þ
where G(t), _GðtÞ and €GðtÞ are the Green’s matrices of the problem. Note that each column j of the Green’s
matrix represents the Green’s function gj(xi, t) of the problem governed by Eq. (13), subjected to homoge-
neous boundary conditions. Eq. (14) is a more convenient notation to represent the calculation of the entries
of the Green’s matrices. Finding the solution of Eq. (14) seems to be expensive; however, it may become cheap
if one observes that when finding a column, say j, of matrix G(t), one is in fact computing the Green’s function
for a source applied at node j. Thus only a sub-domain, or rather a sub-mesh, in the neighborhood of node j

must be considered. It is important to observe that the adopted sub-domain region may be a little larger than
the one estimated theoretically, in order to minimize errors, especially when a large number of sub-steps is
considered.

It is important to notice that mass matrices are lumped in the finite difference scheme employed here to
compute the Green’s matrices required by the ExGA method. Lumped matrices lead to explicit algorithms,
which drastically decrease computational efforts. However, in many cases, explicit algorithms lead to less accu-
rate and conditionally stable analysis. The use of sub-steps, as illustrated here, makes the ExGA algorithm
more accurate and unconditionally stable for practical purposes, since critical time step values can be made
as large as one wishes, by increasing the number of sub-steps.
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4. The ExGA-Runge–Kutta method (ExGA-RK)

A time-marching algorithm is used to find numerical solutions of Eq. (14). In this work the Runge–Kutta
and the central difference schemes are considered. It can be shown that the explicit form of the classical fourth-
order Runge–Kutta method for hyperbolic problems can be written as
W1 ¼M�1ð�KGt � C _GtÞ

W2 ¼M�1 �K Gt þ 1

2

Dt
n

_Gt

� �
� C _Gt þ 1

2

Dt
n

W1

� �� �

W3 ¼M�1 �K Gt þ 1

2

Dt
n

_Gt þ 1

4

Dt2

n2
W1

� �
� C _Gt þ 1

2

Dt
n

W2

� �� �

W4 ¼M�1 �K Gt þ Dt
n

_Gt þ 1

2

Dt2

n2
W2

� �
� C _Gt þ Dt

n
W3

� �� �
ð15Þ
The displacement and velocity Green matrices are evaluated by
GtþDt
n ¼ Gt þ Dt

n
_Gt þ 1

6

Dt2

n2
ðW1 þW2 þW3Þ

_GtþDt
n ¼ _Gt þ 1

6

Dt
n
ðW1 þ 2W2 þ 2W3 þW4Þ

ð16Þ
Expression (16) is general and the ExGA-RK approach requires the computation of GDt and _GDt. The
Green’s matrices GDt and _GDt can be obtained in one step by making n = 1 in expressions (15) and (16), or
by employing n sub-steps within the time step Dt. When sub-stepping is employed, stability conditions and
accuracy are substantially improved. If an adequate number of sub-steps is employed, the critical time step
can become so large that, for all practical purposes, explicit Green’s function based time stepping algorithms
become unconditionally stable. Accuracy is also drastically improved, so that, having a good time history pic-
ture will be the factor defining the time step length.
5. Stability of the ExGA-RK and Runge–Kutta methods

To examine the stability properties of direct integration methods, the dynamic equilibrium equation of a
single-degree-of-freedom mechanical system can be used (see Eq. (3)). The conclusions apply to multi-
degree-of-freedom systems as well, because when a modal basis is employed, the uncoupled equations are sim-
ilar to Eq. (3). When a SDOF is considered, Eq. (8) can be represented by the following recursive expression:
utþDt

_utþDt

� 	
¼

_gðDtÞ þ 2nxgðDtÞ gðDtÞ
€gðDtÞ þ 2nx _gðDtÞ _gðDtÞ

� 	
ut

_ut

� 	
þ

L11 L12

L21 L22

� 	
f t

f tþDt

� 	
¼ A

ut

_ut

� 	
þ L

f t

f tþDt

� 	
ð17Þ
where A represents the amplification matrix and the load operator is represented by matrix L. Note that the
load operator is obtained here for external loads that vary linearly within [t, t + Dt], as presented by expres-
sions (10)–(12).

The stability condition requires that matrix A does not amplify errors as the time-step algorithm advances
on time. The condition required to assure stability is [32,33]:
qðAÞ 6 1 ð18Þ

where q(A) is the spectral radius of matrix A, q(A) = maxjkij, where the eigenvalues ki are obtained from the
solution of the eigenvalue problem Av = kv.

Taking into account expressions (15) and (16) for the Runge–Kutta method, the numerical Green’s func-
tions g(Dt) and _gðDtÞ are given by the following recursive matrix relation:
gðDtÞ
_gðDtÞ

� 	
¼

A11
Dt
n

� �
A12

Dt
n

� �
A21

Dt
n

� �
A22

Dt
n

� �
" #n

gð0Þ
_gð0Þ

� 	
ð19Þ
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where g(0) = 0, _gð0Þ ¼ 1 and
A11
Dt
n

� �
¼ 1

24
24� 12

Dt2

n2
x2 þ 8

Dt3

n3
x3nþ ð1� 4n2ÞDt4

n4
x4

� �

A12
Dt
n

� �
¼ �1

6

Dt
n
�6þ 6n

Dt
n

xþ ð1� 4n2ÞDt2

n2
x2 þ nð�1þ 2n2ÞDt3

n3
x3

� �

A21

Dt
n

� �
¼ 1

6

Dt
n

x2 �6þ 6n
Dt
n

xþ ð1� 4n2ÞDt2

n2
x2 þ nð�1þ 2n2ÞDt3

n3
x3

� �

A22

Dt
n

� �
¼ 1

24
24� 48n

Dt
n

xþ 16nð1� 2n2ÞDt3

n3
x3 þ 12ð�1þ 4n2ÞDt2

n2
x2 þ ð1� 12n2 þ 16n4ÞDt4

n4
x4

� �
ð20Þ
Applying Eqs. (19) and (20) into the amplification matrix A shown in Eq. (17), having in mind that €gðDtÞ is
calculated from the equilibrium equation, i.e., €gðDtÞ ¼ �2nx _gðDtÞ � x2gðDtÞ, it becomes possible to solve the
eigenvalue problem and to compute the amplification spectral matrix radius. The expression for the spectral
radius, when n = 0, is given below, as a function of the number of sub-steps n and of Dt/T, where T = 2p/x is
the natural period:
qðA; nÞ ¼ 3�n a� 2
bffiffiffiffiffiffiffiffi
�n6
p

� �n
2

aþ 2
bffiffiffiffiffiffiffiffi
�n6
p

� �n
2

ð21Þ
where
a ¼ 3� 6p2

n2

Dt2

T 2
þ 2p4

n4

Dt4

T 4

b ¼ 3n2p
Dt
T
� 2p3 Dt3

T 3
Fig. 1 shows that stability conditions can be relaxed when sub-steps are considered. When n = 1 the present
method has the same stability restrictions as the Runge–Kutta scheme, both of them are stable as long as Dt/T
is less than

ffiffiffi
2
p

=p. For n = 2 the present method stability condition is given by Dt=T 6 2
ffiffiffi
2
p

=p. It can be dem-
onstrated that the critical value of Dt/T varies linearly with n, i.e., the stability condition is: Dt=T 6 n

ffiffiffi
2
p

=p.
6. Truncation errors of the load operator for the ExGA-RK method

In order to measure the error caused by the numerical integration of the convolution integrals, the analyt-
ical load operator LAN can be compared with the numerical one. Assuming that the force is linear between the
time step [0, Dt], the convolution integrals, for n = 0, can be written as (see Eq. (5)):
Fig. 1. Spectral radius related to the (—) ExGA-RK and (,) Runge–Kutta schemes for the undamped case (n = 0.0).
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Z Dt

0

gðDt � sÞf ðsÞds ¼
Z Dt

0

1

x
sinðxðDt � sÞÞ f ðDtÞ � f ð0Þ

Dt

� �
sþ f ð0Þ

� 	
ds

Z Dt

0

_gðDt � sÞf ðsÞds ¼
Z Dt

0

cosðxðDt � sÞÞ f ðDtÞ � f ð0Þ
Dt

� �
sþ f ð0Þ

� 	
ds

ð22Þ
After Eq. (22) is integrated, it can be put in a matrix form as indicated below:
LAN ¼
cosðxDtÞ

x2 þ sinðxDtÞ
x3Dt

1
x2 � sinðxDtÞ

x3Dt

� 1
x2Dt þ

cosðxDtÞ
x2Dt þ

sinðxDtÞ
x

1
x2Dt �

cosðxDtÞ
x2Dt

" #
ð23Þ
which can be expanded in Taylor’s series as follows:
LANð1; 1Þ ¼
Dt2

3
� x2Dt4

30
þ x4Dt6

840
� x6Dt8

45360
þ x8Dt10

3991680
� � � �

LANð1; 2Þ ¼
Dt2

6
� x2Dt4

120
þ x4Dt6

5040
� x6Dt8

362880
þ x8Dt10

39916800
� � � �

LANð2; 1Þ ¼
Dt
2
� x2Dt3

8
þ x4Dt5

144
� x6Dt7

5760
þ x8Dt9

403200
� � � �

LANð2; 2Þ ¼
Dt
2
� x2Dt3

24
þ x4Dt5

720
� x6Dt7

40320
þ x8Dt9

3628800
� � � �

ð24Þ
The numerical load operator matrix obtained using Eq. (10) is indicated by Eq. (25) below:
L1 ¼

Pk
j¼1

k�j
k2 Dtg Dt � j

k Dt
� � Pk

j¼1

j
k2 Dtg Dt � j

k Dt
� �

Pk
j¼1

k�j
k2 Dt _g Dt � j

k Dt
� � Pk

j¼1

j
k2 Dt _g Dt � j

k Dt
� �

2
6664

3
7775 ð25Þ
The load operator matrix indicated by expression (25) is denoted L1. Eqs. (11) and (12) can be used to gen-
erate load operator matrices denoted here, respectively, by L2 and L3. It is important to observe that discrete
values of g(s) are required in order to numerically compute the convolution integrals previously indicated.
Thus, it is appropriate to adopt k = n, i.e., all the values of g(s), obtained through sub-stepping, are used
to evaluate expressions (10), (11) or (12). Having in mind that the Runge–Kutta scheme is being adopted
to calculate the Green’s function terms, the load operator entries may be obtained, as presented in Table 1,
for L1, L2 and L3, and n = 1 and n = 2.

A comparison of expressions (24) with Table 1 shows that the errors of the load operator entries decrease as
n increases. As expected, the load operator matrix L3 produces better results than the others. As shown in the
1
s of the load operator matrix for the ExGA-RK method

n = k = 1 n = k = 2

L1(1,1) = 0 L1ð1; 1Þ ¼ L1ð1; 2Þ ¼ Dt2

8 � x2Dt4

192

L1(1,2) = 0 L1ð2; 1Þ ¼ Dt
4 � x2Dt3

32 þ x4Dt5

1536

L1(2,1) = 0 L1ð2; 2Þ ¼ 3Dt
4 � x2Dt3

32 þ x4Dt5

1536

L1(2,2) = Dt

L2ð1; 1Þ ¼ Dt2

2 � x2Dt4

12 L2ð1; 1Þ ¼ 3Dt2

2 � 3x2Dt4

64 þ x4Dt6

512 � x6Dt8

36864

L2(1,2) = 0 L2ð1; 2Þ ¼ Dt2

8 � x2Dt4

192

L2ð2; 1Þ ¼ Dt
2 � x2Dt3

4 þ x4Dt5

48 L2ð2; 1Þ ¼ Dt
2 � 5x2Dt3

32 þ 17x4Dt5

1536 � 5x6Dt7

18432 þ x8Dt9

589824

L2ð2; 2Þ ¼ Dt
2 L2ð2; 2Þ ¼ Dt

2 � x2Dt3

32 þ x4Dt5

1536

– L3ð1; 1Þ ¼ Dt2

3 � 5x2Dt4

144 þ x4Dt6

768 � x6Dt8

55296

L3ð1; 2Þ ¼ Dt2

6 � x2Dt4

144

L3ð2; 1Þ ¼ Dt
2 � x2Dt3

8 þ x4Dt5

128 � 5x6Dt7

27648 þ x8Dt9

884736

L3ð2; 2Þ ¼ Dt
2 � x2Dt3

24 þ x4Dt5

1152
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following sections, the errors introduced by the amplification matrix A are higher than those caused by the
load operator L.

One should not be misled by the powers of x in Table 1 (and, as a consequence, an erroneous interpretation
of several stiffness matrix multiplications in a MDOF system), which appears due to the Taylor’s series expan-
sion. The evaluation of the load convolution integral for MDOF systems is not expensive if one notices that
the force is interpolated within the time interval. Thus, computation of L factors is required only at the first
time step. Numerical Green’s matrices are employed to compute w1 and w2 (see expressions (10)–(12)), which
are stored and used for all subsequent time steps: only simple products by the vector force entries by corre-
sponding coefficients are then required.

7. Accuracy of the ExGA-RK and the Runge–Kutta methods

The influence of the numerical dissipation and numerical dispersion have to be considered for a complete
analysis of performance. These two characteristics can be, respectively, measured by the expression of the
algorithm damping ratio �n and relative period error ðT � T Þ=T , where T = 2p/x and T ¼ 2p=�x. Numerical
errors can also be estimated solving an initial value problem where the relative period error and the amplitude
decay AD are calculated numerically (see [33]). Alternatively, the analytical expression for algorithm damping
ratio and relative period error can be defined in terms of the principal roots k1,2 of the eigenvalue problem as
shown below (see [3,8,32,46]). Thus, the amplitude decay AD can be approximated by the following form
AD � 2p�n and the relative period error is given by ðT � T Þ=T ¼ ðx� �xÞ=�x (see [32]):
Fig.
�x ¼ arctanðB=AÞ
Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
�n ¼ � lnðA2 þ B2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
2 arctanðB=AÞ

ð26Þ
Parameters A and B of the expressions shown above are obtained from the following equation:
k1;2 ¼ A� Bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
exp � arctan

B
A

� �
i

� �
¼ exp ��n�xDt � �x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
Dti

� �
ð27Þ
Fig. 2a and b shows, respectively, that the algorithm damping ratio and relative period error decrease when
sub-stepping is used. When n = 1 the ExGA-Runge–Kutta method has the same accuracy as the original Run-
ge–Kutta. Low values of n are sufficient to enhance considerably the range of permitted time-step values.

8. The ExGA-Central Difference method (ExGA-CD)

When central differences in time are used to calculate the Green’s matrix, the following recursive expression
is obtained:
GtþDt
n ¼ n2

Dt2
Mþ n

2Dt
C

� ��1
2n2

Dt2
M� K

� �
Gt þ � n2

Dt2
Mþ n

2Dt
C

� �
Gt�Dt

n

� �
ð28Þ
2. Accuracy of the (—) ExGA-RK and (,) Runge–Kutta schemes: (a) relative period error and (b) numerical damping ratio.
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where
G�
Dt
n ¼ G0 � Dt

n
_G0 þ Dt2

2n2
€G0

€G0 ¼M�1ð�C _G0 � KG0Þ
The spectral radius of the amplification matrix shown in expression (17) must be computed in order to ana-
lyze the stability condition of the ExGA-Central Difference method. The Green’s function is evaluated
through expression (29) below:
gðDtÞ
gð0Þ

� 	
¼

2� x2Dt2=n2

1þ nxDt=n
�1þ nxDt=n
1þ nxDt=n

1 0

2
4

3
5

n

gð0Þ
g � Dt

n

� �
" #

ð29Þ
where g(0) = 0, _gð0Þ ¼ 1, €gð0Þ ¼ �2nx _gð0Þ � x2gð0Þ and g � Dt
n

� �
¼ gð0Þ � Dt

n _gð0Þ þ Dt2

2n2 €gð0Þ.
The Green’s function first and second time derivatives can be calculated by
_gðDtÞ ¼ n
2Dt

g Dt þ Dt
n

� �
� g Dt � Dt

n

� �� �

€gðDtÞ ¼ n2

Dt2
g Dt þ Dt

n

� �
� 2gðDtÞ þ g Dt � Dt

n

� �� � ð30Þ
The amplification matrix for the ExGA-CD method is obtained by substituting g(Dt), _gðDtÞ and €gðDtÞ,
given by Eqs. (29) and (30), into Eq. (17). The spectral radius for the present case, when n = 0, can be com-
puted by
qðA; nÞ ¼ 4�1�n

c
4n2 a� 4

n2

ffiffiffi
b
p� �n

aþ 4

n2

ffiffiffi
b
p� �n

þ n2

4
ða� 2Þ a� 4

n2

ffiffiffi
b
p� �n

þ aþ 4

n2

ffiffiffi
b
p� �n� �2

 ! !1=2

ð31Þ

where
a ¼ 2� 4p2

n2

Dt2

T 2

b ¼ �n2p2 Dt2

T 2
þ p4 Dt4

T 4

c ¼ n2 � p2 Dt2

T 2
Fig. 3 depicts results for q(A, n) versus Dt/T, taking into account several values for n. The curve for the
central difference method is constant, q(A) = 1, until the stability limit is reached; at this point, q(A)!1.
The q(A, n) versus Dt/T curve for the ExGA-CD method, for n = 1, shows that limDt/T!0q (A, n) = 1; in fact
such an asymptotic behavior occurs for all values of n. For small values of Dt/T, the ExGA-CD method may
have stability; however, the method breaks down much before the standard central difference approach. For
values of n other than one, the q(A, n) versus Dt/T curve displays an oscillatory behavior; it is possible to
observe in Fig. 3 that the oscillation amplitude decreases as n increases, indicating that stability restrictions
may be relaxed for some values of n. However, as shown in Fig. 5a and b, the accuracy of the ExGA-CD
method is acceptable only for low values of Dt/T. A close analysis of Fig. 3 indicates that q(A, n) P 1 for
the ExGA-CD method, thus, it should be considered as unconditionally unstable.

9. The ExGAH-Central Difference method (ExGAH-CD)

As shown in the last section, the ExGA-Central Difference method is unconditionally unstable. Stability
can be improved substantially if the contribution of Ut to Ut+Dt is computed by superposition in space
of the contributions of individual nodes transferred in time by the step response function. In this case the



Fig. 3. Spectral radius related to the (—) ExGA-CD and (- - - -) Central Difference schemes for the undamped case (n = 0.0).
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transference of the Ut contribution to Ut+Dt is carried out by the product of H(Dt)MUt, as discussed next. The
transfer step response matrix H(Dt) has been used previously, in a context similar to that of the present work,
in [30,31,13]. Thus, for the SDOF case, the ExGAH integral equation reads
uðtÞ ¼ hðtÞuð0Þ þ gðtÞ _uð0Þ þ
Z t

0

gðt � sÞf ðsÞds ð32Þ
Comparison of Eqs. (32) and (4) shows that:
hðtÞ ¼ _gðtÞ þ 2nxgðtÞ
_hðtÞ ¼ €gðtÞ þ 2nx _gðtÞ

ð33Þ
Eq. (32) shows that h(t) is the time response of the SDOF mechanical system, due to the following initial
conditions: h(0) = 1 and _hð0Þ ¼ 0. Thus, instead of employing the r.h.s of Eq. (33), with _gðtÞ obtained from the
solution of Eq. (13), to transfer u(0) contribution to u(t), substantial stability conditions improvements are
obtained if h(t) is computed independently.

Expressions (32) and (33) can also be employed in nodal analyses; when physical coordinates are used for
MDOF systems, the following matrix expressions for U and _U arise:
UtþDt ¼ HðDtÞMUt þGðDtÞM _Ut þ
Z tþDt

t
Gðt þ Dt � sÞFðsÞds ð34Þ

_UtþDt ¼ _HðDtÞMUt þ _GðDtÞM _Ut þ
Z tþDt

t

_Gðt þ Dt � sÞFðsÞds ð35Þ
Eqs. (34) and (35) require the calculation of the step response matrix H(Dt) and of the Green’s matrix
G(Dt), as well as their time derivatives. The calculation of the Green’s matrix was presented in previous sec-
tions and the discussion presented next is concerned with obtaining H(Dt) and _HðDtÞ. Expression (34) shows,
as commented previously, that the step response matrix transfers U0 to UDt (or Ut to Ut+Dt) through superpo-
sition of responses of initial conditions at each node given by the product of the node shape function times the
value of the initial displacement at that node. Thus, H and _H are obtained by a procedure similar to that
employed to compute G and _G, i.e., from the solution of the homogeneous version of Eq. (1). However, dif-
ferently from the Green’s function, the step response function is calculated with non-null initial displacement
and null initial velocity, as indicated next:
M €HðtÞ þ C _HðtÞ þ KHðtÞ ¼ 0

H0 ¼M�1

_H0 ¼ 0

ð36Þ
The amplification matrix for the ExGAH-CD method, for a SDOF mechanical system, can be expressed as
indicated by Eq. (37):
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A ¼
hðDtÞ gðDtÞ
_hðDtÞ _gðDtÞ

� 	
ð37Þ
The step response function can be calculated numerically, by the central difference scheme, as
hðDtÞ
hð0Þ

� 	
¼

2� x2Dt2=n2

1þ nxDt=n
�1þ nxDt=n
1þ nxDt=n

1 0

2
4

3
5

n

hð0Þ
h � Dt

n

� �
" #

ð38Þ
where h(0) = 1, _hð0Þ ¼ 0, €hð0Þ ¼ �2nx _hð0Þ � x2hð0Þ and h � Dt
n

� �
¼ hð0Þ � Dt

n
_hð0Þ þ Dt2

2n2
€hð0Þ

Fig. 4 depicts the variation of the spectral radius versus Dt/T, when sub-steps are considered. As can be
seen, the ExGAH – CD algorithm provides a conditionally stable scheme were the critical value of Dt/T
increases as n increases. For n = 1 the present method has the same stability characteristics as the traditional
central difference method as well as equivalent accuracy, as shown by the graphics on Figs. 4 and 5a,b. For
n = 2, the ExGAH-CD method becomes unstable when Dt/T is greater than 2/p. The analyses carried out by
the present work show that the critical value for Dt/T has linear variation with n, expressed by Dt/T 6 n/p.
This is an important result as it renders unnecessary to develop approximate expressions to estimate
q(A, n), having in mind that the value of the spectral radius is equal to one until it reaches its critical value.
Furthermore, the method accuracy improves substantially with just a few sub-steps n, as can be seen in
Fig. 5a and b.

10. Truncation errors of the amplification matrix

From the Lax equivalence theorem, the scheme is said to be convergent if it is stable and consistent. The
stability has already been discussed above and the consistency is studied by analyzing the truncation error of
ig. 4. Spectral radius related to the (—) ExGAH-CD and (,) Central Difference schemes for the undamped case (n = 0.0).

. Accuracy of the (- - - - -) ExGA-CD, (—-) ExGAH-CD and (,) Central Difference schemes: (a) relative period error and (b)
ical damping ratio.
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the numerical amplification matrix when it is compared with the analytical one. The analytical amplification
matrix for a SDOF is given by (see [34,37,42]):
AAN ¼ e�nxDt
cosðxdDtÞ þ nx

xd
sinðxdDtÞ 1

xd
sinðxdDtÞ

� x2

xd
sinðxdDtÞ cosðxdDtÞ � nx

xd
sinðxdDtÞ

 !
ð39Þ
where xd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
x is the damped vibration frequency.

The Taylor’s series expansions of the entries of matrix AAN are given by
AANð1; 1Þ ¼ 1� x2Dt2

2
þ n

3
x3Dt3 � ð4n2 � 1Þ

24
x4Dt4 þ nð2n2 � 1Þ

30
x5Dt5

� ð1� 12n2 þ 16n4Þ
720

x6Dt6 þ � � � ð40Þ

AANð1; 2Þ ¼ Dt � nxDt2 þ ð4n2 � 1Þ
6

x2Dt3 � nð2n2 � 1Þ
6

x3Dt4 þ ð16n4 � 12n2 þ 1Þ
120

x4Dt5

� ð16n5 � 16n3 þ 3nÞ
360

x5Dt6 þ � � � ð41Þ

AANð2; 1Þ ¼ �x2Dt þ nx3Dt2 � ð4n2 � 1Þ
6

x4Dt3 þ nð2n2 � 1Þ
6

x5Dt4 � ð16n4 � 12n2 þ 1Þ
120

x6Dt5

þ ð16n5 � 16n3 þ 3nÞ
360

x7Dt6 � � � � ð42Þ

AANð2; 2Þ ¼ 1� 2nxDt þ ð4n2 � 1Þ
2

x2Dt2 � 2nð2n2 � 1Þ
3

x3Dt3 þ ð16n4 � 12n2 þ 1Þ
24

x4Dt4

� ð16n5 � 16n3 þ 3nÞ
60

x5Dt5 þ ð64n6 � 80n4 þ 24n2 � 1Þ
720

x6Dt6 � � � � ð43Þ
The Taylor’s series expansions of the entries of the numerical amplification matrix A (Eq. (17)), for the
ExGA-Runge–Kutta, as a function of sub-steps n, are given by
Að1; 1Þ ¼ 1� x2Dt2

2
þ n

3
x3Dt3 � ð4n2 � 1Þ

24
x4Dt4 þ 1� 1

n4

� �
nð2n2 � 1Þ

30
x5Dt5

� 1� 6

n4
þ 5

n5

� �
ð1� 12n2 þ 16n4Þ

720
x6Dt6 þ . . . ð44Þ

Að1; 2Þ ¼ Dt � nxDt2 þ ð4n2 � 1Þ
6

x2Dt3 � nð2n2 � 1Þ
6

x3Dt4

þ 1� 1

n4

� �
ð16n4 � 12n2 þ 1Þ

120
x4Dt5 � 1� 6

n4
þ 5

n5

� �
ð16n5 � 16n3 þ 3nÞ

360
x5Dt6 þ � � � ð45Þ

Að2; 1Þ ¼ �x2Dt þ nx3Dt2 � ð4n2 � 1Þ
6

x4Dt3 þ nð2n2 � 1Þ
6

x5Dt4 � 1� 1

n4

� �
ð16n4 � 12n2 þ 1Þ

120
x6Dt5

þ 1� 6

n4
þ 5

n5

� �
ð16n5 � 16n3 þ 3nÞ

360
x7Dt6 � � � � ð46Þ

Að2; 2Þ ¼ 1� 2nxDt þ ð4n2 � 1Þ
2

x2Dt2 � 2nð2n2 � 1Þ
3

x3Dt3 þ ð16n4 � 12n2 þ 1Þ
24

x4Dt4

� 1� 1

n4

� �
ð16n5 � 16n3 þ 3nÞ

60
x5Dt5

þ 1� 6

n4
þ 5

n5

� �
ð64n6 � 80n4 þ 24n2 � 1Þ

720
x6Dt6 � � � � ð47Þ
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and the Taylor’s series expansions of the entries of the numerical amplification matrix A (Eq. (37)), for the
ExGAH-Central Difference, as a function of sub-steps n, are given by
Að1; 1Þ ¼ 1� x2Dt2

2
þ ð1� 1

n2
Þ n

3
x3Dt3 � ð1� 1

n2
Þ ð4n2 � 1Þ

24
x4Dt4 þ � � � ð48Þ

Að1; 2Þ ¼ Dt � nxDt2 þ 1� 1

n2

� �
ð4n2 � 1Þ

6
x2Dt3 � 1� 1

n2

� �
nð2n2 � 1Þ

6
x3Dt4 þ � � � ð49Þ

Að2; 1Þ ¼ �x2Dt þ nx3Dt2 � 1þ 1

2n2

� �
ð4n2 � 1Þ

6
x4Dt3 þ nð�1� 2n2 þ 4ð2þ n2Þn2Þ

12n2
x5Dt4 � . . . ð50Þ

Að2; 2Þ ¼ 1� 2nxDt þ ð4n2 � 1Þ
2

x2Dt2 � 1þ 1

2n2

� �
2nð2n2 � 1Þ

3
x3Dt3

þ ð�1þ n2 � 12ð1þ n2Þn2 þ 16ð2þ n2Þn4Þ
24n2

x4Dt4 � � � � ð51Þ
Comparing Eqs. (44)–(47) with Eqs. (40)–(43), it can be observed that the ExGA-Runge–Kutta is at least
fourth-order accurate, i.e., the truncation errors are O(Dt5). It can also be inferred from Eqs. (48)–(51) that the
ExGAH-Central Difference is at least second-order accurate, i.e., O(Dt3). Thus, the truncation error becomes
smaller as the number of sub-steps n increases for both methods. It is easily seen that limn!1A = AAN, which
demonstrates the consistency of the present method.

11. Numerical applications

In the present section, several numerical applications are presented, illustrating the potentialities of the pro-
posed methodology. Firstly, a SDOF model is considered and, in the sequence, two MDOF acoustic models
are analyzed.

11.1. Single-degree-of-freedom model

The numerical accuracy of the present method is studied by analyzing Eq. (52) below, which governs the
harmonic response of a single-degree-of-freedom mechanical system:
€uðtÞ þ 2nx _uðtÞ þ x2uðtÞ ¼ 0 ð52Þ

with initial conditions
uð0Þ ¼ 1

_uð0Þ ¼ 1
ð53Þ
In the present analysis, x = 2p and n = 0 are considered. The convergence rates or the order of accuracy of
the methods described previously can be measured from the slope of the error curve indicated in Fig. 6, which
is plotted in a double logarithmic scale. The error of the displacement, i.e., ju(tN) � uNj, is calculated at time
tN = 1 s, considering different numbers of time steps (N). Fig. 6 shows that the ExGA-RK, with n = 1,2,5, and
the RK are fourth-order accurate while the ExGAH-CD, with n = 1,2,4, and the CD are second-order accu-
rate. However, the error of the proposed methods decreases as n increases due to the smaller relative period
error and algorithm damping ratio.
11.2. Acoustic rod

This example simulates a one-dimensional wave propagation problem in a uniform rod under an external
applied load p(t). The boundary conditions and the geometry of the model are depicted in Fig. 7. The rod has
null initial conditions over its entire domain. The material properties and geometrical parameters considered
are: K = 3.2 · 107 kN/m2, q = 2000 kg/m3, a = 4 m and b = 1 m. The spatial domain is discretized by the sec-
ond-order finite difference scheme and a central finite difference approximation is used to take into consideration
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Fig. 6. Displacement rate of convergence at time tN = 1 s.

Fig. 7. Acoustic rod: (a) geometry and boundary conditions and (b) external applied load.
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natural boundary conditions. The finite difference grid employed in the analysis has 1701 points
(Dx = Dy = 0.05 m).

The displacement results at point A (a, b/2), provided by the RK, CD, ExGA-RK2 and ExGA/ExGAH-
CD2 schemes, are shown in Figs. 8a,b. Accurate results are obtained considering all methods, except the
ExGA-CD2, for Dt = 5.0 · 10�6 s. This time step length was chosen so that the relation cDt 6 ‘‘element
length’’ is obeyed, where c (medium wave propagation velocity) is given by

ffiffiffiffiffiffiffiffiffi
K=q

p
. Thus, results obtained with

this Dt, and the analytical solution, are taken as references to evaluate accuracy of the ExGA-RK2 and ExGA/
ExGAH-CD2 with larger time steps.

It can be inferred from Fig. 8a that the ExGA-RK2 method, with n = 40, provides good results when a large
time step is considered, i.e., Dt = 5.0 · 10�4 s. This time step is one hundred times higher than the reference
time step (note that the restriction cDt 6 ‘‘element length’’ need not to be obeyed when sub-steps are
employed). Results plotted in Fig. 8a illustrate that when the rectangle rule is adopted (see expression
(10)), rather than then the trapezoidal rule, less accurate results are obtained, especially for large time steps.
Fig. 8b shows that accurate results are provided when the time step is increased from Dt = 5.0 · 10�6 s to
Dt = 2.5 · 10�4 s, with n = 40, for the ExGAH-CD2 method (the ExGA-CD2 method blows up even for
the reduced time-step Dt = 5.0 · 10�6 s, demonstrating its instability).

11.3. Membrane

The third numerical example discussed here is that of a square membrane, fixed along its boundary and
submitted to an initial velocity condition v0(x, y) = c (c is the medium wave propagation velocity) applied
at the gray region shown in Fig. 9a. The parameters values for this problem are: a = 1.0 m (square membrane



Fig. 8. Displacement time-history results at point A considering a second-order FDM and ExGA algorithms: (a) ExGA-RK4 and (b)
ExGA/ExGAH-CD4.
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length) and c = 1.0 m/s. The spatial domain is discretized by a fourth-order finite difference scheme, employing
a regular finite difference grid of 6561 points (Dh = 0.0125 m), as shown in Fig. 9b.

The displacement time history at point A (a/2, a/2), evaluated by the ExGA-RK4 and the ExGAH-CD4

methods, are compared with the analytical solution [23,44], in Fig. 10. The reference time step adopted in this
example is given by Dt = 0.008 s. The usual time-step estimative cDt 6 ‘‘element length’’, provides for the pres-
ent case: Dt 6 0.0125 s. In order to demonstrate the high accuracy of the two methods in focus, the time step is
Fig. 9. Acoustic membrane: (a) geometry, boundary and initial conditions and (b) 2D finite difference grid.



Fig. 10. Displacement time-history results at point A considering a fourth-order FDM and ExGA-RK4 and ExGAH-CD4 schemes.
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increased up to Dt = 0.2 s, for the ExGA-RK4 (whose stability condition allows higher time steps than the
ExGAH-CD4), and up to Dt = 0.12 s, for the ExGAH- CD4; 20 sub-steps (n = 20) were employed for both
cases. The numerical results are fairly good, demonstrating the high accuracy of the two schemes.

In Fig. 11, the convergence rates for the Runge–Kutta and ExGA- RK4 schemes are analyzed trough com-
parison of numerical results at time t = 2.5 s, considering successive mesh and time step refinement (the rela-
tion Dt/Dh is always kept constant). As it can be seen in Fig. 11, both methods have the same convergence rate.
The ExGA-RK4 method employed a time step five times larger than that of the standard Runge–Kutta
approach, without any loss of accuracy. The ExGA-RK4 allows time steps as large as required, with no loss
of accuracy as long as more sub-steps are considered.

As it is well known, the central difference method is a very low demanding computational method. How-
ever, its main drawback is the existence of a critical time step value, which, for some engineering analyses, is
too small. The present method is explicit and overcome this limitation: large time steps can be adopted without
deteriorating numerical responses, once a proper number of sub-steps is considered. Thus, the method is quite
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robust and the time-marching scheme that arises is very efficient (just few matrix–vector multiplications are
necessary, where the matrices are diagonally banded). As it can be seen in Figs. 8 and 10, the ExGAH-Central
Difference and ExGA-Runge–Kutta schemes provide good results considering large time steps, which are pro-
hibitive for the Central Difference and Runge–Kutta methods.

A good estimative of the ratio between the number of arithmetic operations per time step of the matrix–
vector products required by the ExGAH and the back substitution operations of implicit FEM algorithms

is given by the parameter a ¼ h Nx
Nf

Dtf
Dtx

, where Dtf and Dtx are, respectively, the time steps of FEM and ExGAH

analyses. Nf is the bandwidth of the FEM effective system matrix and Nx is the ratio between the total number
of non-null coefficients of the ExGAH G (or H) matrix, divided by the total number of equations. Nx increases
and so does the CPU time, as the number of sub-steps of the ExGAH algorithm increases; however, more sub-
steps permit larger Dtx, and thus, additional cost reduction. If a FEM algorithm which works with fix band-
width is employed, a will be in most cases much less than 1 for complex large scale problems and higher than 1
for simple applications. Programs that optimize the bandwidth and skyline procedures can improve the per-
formance of FEM implicit algorithms and in some cases can make the CPU time close (or even lower) than
that of the ExGAH approach.

12. Conclusions

The present paper describes a new family of explicit time integration methods called ExGA, which are
based on numerical calculation of Green’s matrices. Standard explicit algorithms, such as central differences,
Runge–Kutta and generalized-a, may have a too short critical time step for a great range of problems, in
which case, implicit schemes may be required. The new algorithms presented here are explicit but have no
time-step restriction for all practical purposes: a time-step one hundred times greater than that recommended
for standard central differences time-marching schemes was considered with no loss either of accuracy or sta-
bility. In fact, the algorithm described here permits controlling its critical time step when sub-steps are used:
the more sub-steps one uses, the larger the critical time step. Moreover, employing sub-steps leads to quite low
artificial damping or period distortion.

The paper also presented the ExGAH approach, under the same concepts of the ExGA. Thus, the ExGAH
became quite flexible, being easy to establish the corresponding expressions to a great range of physical–math-
ematical models. The development presented here shows also that it is straightforward to use any numerical
method to account for spatial discretization, as well as any time marching scheme to compute Green’s and unit
step functions and their time derivative matrices.

Not only the present explicit method can be considered unconditionally stable for all practical purposes,
but also, since it can march with large time steps, it is a very attractive tool considering long period problems.
In this case, the time marching process consists of only few matrix–vector multiplications (the matrices being
diagonally banded), whereas in standard unconditionally stable methodologies (implicit approaches), one sys-
tem of equations must be dealt with at each time step and the time step must be much smaller in order to keep
accuracy, requiring a larger amount of time marching steps and operations.
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